Chemistry 40S

Final Exam Review Package

Multiple Choice Section

Aqueous Reactions

1. What is the net ionic equation when solutions of silver nitrate and sodium acetate are mixed?
a. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NaNO}_{3}(\mathrm{~s})$
b. $\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (s) $\leftrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$
c. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{~s})$
d. There is no net ionic equation
2. A $0.1 \mathrm{~mol} / \mathrm{L}$ solution of a certain metal ion will form a precipitate with $0.1 \mathrm{~mol} / \mathrm{L}$ solutions of all of these ions; $\mathrm{OH}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{4}{ }^{2-}$. Which metal ion fits this description?
a. Ba^{2+}
b. Fe^{2+}
c. Mg^{2+}
d. Pb^{2+}
3. Which of the following ions could be added to an aqueous mixture containing Pb^{2+} and Ba^{2+} to separate the ions by precipitating one of them?
a. I^{-}
b. $\mathrm{NO}_{3}{ }^{-}$
c. $\mathrm{PO}_{4}{ }^{3-}$
d. $\mathrm{SO}_{4}{ }^{2-}$
4. Which of the following compounds has a low solubility in water?
a. NaCl
b. AgBr
c. FeCl_{2}
d. MgBr_{2}
5. Identify the ionic species present in an aqueous solution of Ammonium phosphate.
a. $\mathrm{NH}_{4}^{+}, \mathrm{P}^{3-}, \mathrm{O}_{2}$
b. $\mathrm{N}^{3-}, \mathrm{H}^{+}, \mathrm{P}^{3-}, \mathrm{O}^{2-}$
c. $\mathrm{NH}_{4}{ }^{+}, \mathrm{PO}_{4}{ }^{3-}$
d. $\mathrm{N}^{3-}, \mathrm{H}^{+}, \mathrm{PO}_{4}{ }^{3-}$
6. How many milliLitres of $1.55 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}(\mathrm{aq})$ are required to neutralize 100.0 mL of 1.90×10^{-4} $\mathrm{mol} / \mathrm{L} \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})$?
a. 24.5 mL
b. 12.3 mL
c. $\quad 6.13 \mathrm{~mL}$
d. 49.0 mL
7. If 24.00 mL of $0.200 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ is added to 36.00 mL of $0.100 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$, the pH of the resulting solution will be:
a. 4.7
b. 2.9
c. 1.7
d. 11.1
8. What are the products of a neutralization reaction between HCl and NaOH ?
I. NaCl
II. $\mathrm{H}_{2} \mathrm{O}$
III. CO_{2}
IV. H_{2}
a. I and III only
b. I and II only
c. II and III only
d. II and IV only
9. Which of the following represents an oxidation reduction reaction?
a. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
b. $\mathrm{CuS}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{Cu}$
c. $\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
d. $2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
10. What is the reducing agent in the following reaction?

$$
\mathrm{Cu}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})
$$

a. $\quad \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
b. $\mathrm{Cu}(\mathrm{s})$
c. $\mathrm{H}^{+}(\mathrm{aq})$
d. $\mathrm{Cu}^{2+}(\mathrm{aq})$
11. Balance the following equation in acid solution and indicate the coefficients of $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{S}
$$

The coefficients of $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$ are, respectively,
a. 5,8
b. 2,6
c. 5,10
d. 2,4
12. How many electrons are transferred in the following reaction?

$$
\mathrm{Cr}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Cu}
$$

a. 6
b. 3
c. 4
d. 2
13. During an oxidation-reduction reaction, what happens to the reducing agent?
a. It accepts electrons.
b. It is oxidized.
c. It is reduced.
d. Its oxidation number decreases.
14. During the following reaction, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a. The oxidation state of carbon changes from +2 to +4 .
b. The oxidation state of carbon changes from -1 to +4 .
c. The oxidation state of carbon changes from 0 to +4 .
d. The oxidation state of carbon changes from 0 to -4 .
15. Which of these half reactions is balanced?
a. $\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{e}$
b. $\mathrm{MoO}_{3}+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{MoO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{VO}_{3}{ }^{-}+3 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$

Atomic Structure:

16. What is the correct number of each particle in a fluoride ion, ${ }^{19} \mathrm{~F}^{-}$?
a. 9 protons, 10 neutrons, 8 electrons
b. 9 protons, 10 neutrons, 9 electrons
c. 9 protons, 10 neutrons, 10 electrons
d. 9 protons, 19 neutrons, 10 electrons
17. Which of the following has the greatest frequency in the visible spectrum?
a. Red light
b. Orange light
c. Green light
d. Violet light
18. How many protons, neutrons and electrons are there in the species ${ }^{26} \mathrm{Mg}^{2+}$?
a. 10 protons, 14 neutrons, 12 electrons
b. 12 protons, 14 neutrons, 10 electrons
c. 12 protons, 26 neutrons, 10 electrons
d. 14 protons, 12 neutrons, 12 electrons
19. A certain sample of an element Z contains 60% of ${ }^{69} Z$ and 40% of ${ }^{71} Z$. What is the relative atomic mass of element Z in this sample?
a. $\quad 69.2 \mathrm{amu}$
b. 69.8 amu
c. 70.0 amu
d. 70.2 amu
20. An element has 11 electrons orbiting the nucleus. In which group of the periodic table will it be found?
a. Group 1
b. Group 2
c. Group 11
d. Group 12
21. Emission of light from an atom occurs when an electron \qquad .
a. drops from a higher to a lower energy level
b. jumps from a lower to a higher energy level
c. moves within its atomic orbital
d. falls into the nucleus
22. How many 3d electrons are present in the ground state of a nickel atom?
a. 6
b. 7
c. 8
d. 9
23. What is the maximum number of orbitals in the d sublevel?
a. 1
b. 3
c. 5
d. 7
24. What family (group \#) on the periodic table would have electrons with the configuration $\mathrm{s}^{2} \mathrm{p}^{5}$?
a. 18
b. 17
c. 16
d. 15
25. What is the noble gas configuration for calcium?
a. $[\mathrm{Ne}] 3 \mathrm{~s}^{2}$
b. $[\mathrm{Ne}] 2 \mathrm{~s}^{2}$
c. $[\mathrm{Ar}] 3 \mathrm{~s}^{2}$
d. $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
26. Which of the following increases across period 3 on the periodic table?
I. Atomic radii
II. Electronegativity
III. Ionization energy
a. I and II only
b. I and III only
c. II and III only
d. I, II and III
27. Different forms of radiation arranged in order of decreasing wavelength are
a. Radiowaves, gamma rays, visible light, UV light
b. Radio waves, Visible light, UV rays, X rays
c. Gamma rays, Radio waves, X rays, UV rays
d. Radio waves, UV rays, Visible light, Gamma rays.
28. What neutral atom has the electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
a. Na
b. K
c. Ca
d. Cl
29. In the periodic table, reading from left to right and top to bottom, the elements are arranged in order of
a. The number of protons in the nucleus
b. The number of neutrons in the nucleus
c. Increasing relative atomic mass
d. Increasing mass number
30. Which of the following increases down a group?
a. Electronegativity
b. Atomic radii
c. Ionization energy
d. None of the above

Kinetics
31. For the reaction,

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

what is the average rate of consumption of oxygen gas in grams per minute if water is being produced at the rate of $2.2 \mathrm{~g} / \mathrm{min}$?
a. $0.36 \mathrm{~g} / \mathrm{min}$.
b. $\quad 1.83 \mathrm{~g} / \mathrm{min}$.
c. $2.2 \mathrm{~g} / \mathrm{min}$.
d. $11.0 \mathrm{~g} / \mathrm{min}$.
32. Consider the following reaction:

$$
\mathrm{COCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{l})
$$

Which of the following could be used to determine reaction rate in a closed container (not open to atmosphere)?
a. a decrease in gas pressure
b. an increase in gas pressure
c. a decrease in the mass of the system
d. an increase in the mass of the system
33. Consider the following reaction mechanism:

Step $1 \mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HClO}+\mathrm{OH}^{-}$
Step $2 \mathrm{I}^{-}+\mathrm{HClO} \rightarrow \mathrm{HIO}+\mathrm{Cl}^{-}$
Step $3 \mathrm{HIO}+\mathrm{OH}^{-} \rightarrow \mathrm{IO}^{-}+\mathrm{H}_{2} \mathrm{O}$
The catalyst is
a. IO^{-}
b. ClO^{-}
c. $\mathrm{H}_{2} \mathrm{O}$
d. HClO
34. The rate of a reaction in a system consisting of a solid and a gas depends on
a. the amount of exposed surface of the solid only.
b. the pressure of the gas only.
c. the temperature only.
d. all of the above.
35. Which of the following reactions would be the most rapid at room temperature?
a. $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightarrow \mathrm{FeSCN}^{2+}(\mathrm{aq})$
b. $2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+10 \mathrm{CO}_{2}(\mathrm{~g})$
c. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d. $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
36. When phosphorus, $\mathrm{P}_{4}(\mathrm{~s})$, is exposed to air, it ignites spontaneously and rapidly releases $2940 \mathrm{~kJ} / \mathrm{mol}$. Which of the following potential energy diagrams best represents this reaction?

Reaction coordinate
C.

Reaction coordinate
B.

Reaction coordinate
D.

Reaction coordinate
37. Which one of the following could NOT be a unit for reaction rate'?
a. $\mathrm{mol} / \mathrm{L} / \mathrm{s}$
b. $\mathrm{g} / \mathrm{L} / \mathrm{s}$
c. $\mathrm{g} / \mathrm{min}$
d. $\mathrm{mol} / \mathrm{L}$
38. As temperature increases, the rates of many chemical reactions increase because
a. the kinetic energy of the molecules increase.
b. the activation energy of the reaction is lowered.
c. the heat content of reactants and products change.
d. the heat of reaction is increased.
39. For the reaction $2 \mathrm{NO}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{NO}_{2}$ the following results were obtained:

trial	$[\mathbf{N O}]$ $(\mathbf{m o l} / \mathbf{L})$	$\left[\mathbf{O}_{2}\right]$ $(\mathbf{m o l} / \mathbf{L})$	Rate $(\mathbf{m o l} / \mathrm{L} / \mathbf{s})$
1	0.12	0.05	0.12
2	0.12	0.10	0.24
3	0.24	0.05	0.48

What is the order of the reaction with respect to [NO]?
a. 0
b. 1
c. 2
d. 3
40. The decomposition of ozone, O_{3}, is believed to occur by the two-step mechanism below. What is the rate law of the reaction?

$\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O}$ (slow) $\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$ (fast)
$2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}$ (net reaction)

a. $\mathrm{R}=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}$
b. $\mathrm{R}=\mathrm{k}\left[\mathrm{O}_{3}\right]$
c. $\mathrm{R}=\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{O}]$
d. $\mathrm{R}=\mathrm{k}\left[\mathrm{O}_{2}\right]^{3}$
41. A catalyst increases the rate of a reaction by
a. increasing the temperature.
b. decreasing $\Delta \mathrm{H}$.
c. increasing the potential energy of the activated complex.
d. decreasing the activation energy.
42. Which of the following will decrease the number of effective collisions during a chemical reaction?
a. Adding a catalyst.
b. Increasing the surface area.
c. Decreasing the temperature.
d. Increasing reactant concentrations.
43. The reaction of an acid with a metal produces 1850 mL of $\mathrm{H}_{2}(\mathrm{~g})$ in 2 minutes and

25 seconds. The rate of this reaction could be expressed as
a. $\quad 12.8 \mathrm{~mL} / \mathrm{s}$.
b. $0.0074 \mathrm{~mL} / \mathrm{s}$.
c. $925 \mathrm{~mL} / \mathrm{min}$.
d. $3700 \mathrm{ml} / \mathrm{min}$.
44. Consider the following factors:
I. concentration of reactants
II. temperature of reactants
III. surface area of reactants

The factors that affect the rate of a chemical reaction between two gases are
a. I and II only.
b. I and III only.
c. II and III only.
d. I, II and III.
45. Which line in the diagram represents the activation energy for a reverse reaction?

a. A
b. B
c. C
d. D
46. The reactions listed below are at the same conditions. Which one would be expected to be the fastest?
a. $\mathrm{C}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CCl}_{4}(\mathrm{~g})$
b. $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$
c. $\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$
d. $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
47. When 100 mL of $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ are added to 1 g of granular zinc at $25^{\circ} \mathrm{C}$, hydrogen is evolved. All of the following will increase the initial rate of hydrogen evolution except
a. substituting $2.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ for $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$.
b. using 200 mL of $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ instead of 100 mL .
c. substituting powdered zinc for granular zinc.
d. increasing the temperature of the $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ to $50^{\circ} \mathrm{C}$.

Which of the following describes the REVERSE reaction?

	Reverse	Activation Energy
	Reaction	$\Delta \mathrm{H}$
a.	uncatalyzed	300

49. Consider the following reaction:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

It was found that, at a certain time, that nitrogen, N_{2}, was being formed at a rate of $0.27 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$. At what rate was ammonia, NH_{3}, being used up?
a. $0.14 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$
b. $0.27 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$
c. $\quad 0.54 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$
d. $2.0 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$
50. Consider the following potential energy diagram:

Identify the activation energy for the forward uncatalysed reaction.
a. 1
b. 2
c. 3
d. 4

Chemical Equilibrium

51. Starting with equal moles of reactants, which of the following equilibrium systems most favours the reactants?
a. $\quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=3.4$
b. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=31.4$
c. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
$\mathrm{K}_{\mathrm{c}}=10$
d. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
$\mathrm{K}_{\mathrm{c}}=1 \times 10^{-31}$
52. Consider the following equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad K_{c}=1.0 \times 10^{-2}
$$

At equilibrium, the $\left[\mathrm{NO}_{2}\right]=2.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ and the $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ is
a. $\quad 2.0 \mathrm{~mol} / \mathrm{L}$
b. $4.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}$
c. $4.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}$
d. $25 \mathrm{~mol} / \mathrm{L}$
53. A mixture contains $0.15 \mathrm{~mol} / \mathrm{L}_{2}, 0.042 \mathrm{~mol} / \mathrm{LS}_{2}$, and $0.33 \mathrm{~mol} / \mathrm{L}_{2} \mathrm{~S}$. Which of the following statements is true if $\mathrm{K}_{\mathrm{c}}=1.03 \times 10^{-6}$ at $700^{\circ} \mathrm{C}$ for the reaction

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) ?
$$

a. The reaction will proceed from right to left.
b. The concentrations of the products will increase, while the concentration of the reactant will decrease.
c. The reaction is already at equilibrium.
d. The concentrations of H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ will decrease, since they are larger than the concentration of S_{2}.
54. A mixture of 0.100 mol of $\mathrm{NO}, 0.0500 \mathrm{~mol}$ of H_{2}, and 0.100 mol of $\mathrm{H}_{2} \mathrm{O}$ is placed in a $1.00-\mathrm{L}$ vessel. The following equilibrium is established:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

At equilibrium $[\mathrm{NO}]=0.0620 \mathrm{M}$.
Calculate the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{~N}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$.
a. $\left[\mathrm{H}_{2}\right]=0.0310 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{N}_{2}\right]=0.0190 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{H}_{2} \mathrm{O}\right]=0.119 \mathrm{~mol} / \mathrm{L}$
b. $\left[\mathrm{H}_{2}\right]=0.0120 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{N}_{2}\right]=0.0380 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{H}_{2} \mathrm{O}\right]=0.138 \mathrm{~mol} / \mathrm{L}$
c. $\left[\mathrm{H}_{2}\right]=0.0120 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{N}_{2}\right]=0.0190 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{H}_{2} \mathrm{O}\right]=0.138 \mathrm{~mol} / \mathrm{L}$
d. $\left[\mathrm{H}_{2}\right]=0.0500 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{N}_{2}\right]=0.0620 \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{H}_{2} \mathrm{O}\right]=0.100 \mathrm{~mol} / \mathrm{L}$
55. Given $\left[\mathrm{COCl}_{2}\right]=0.299 \mathrm{~mol} / \mathrm{L},\left[\mathrm{Cl}_{2}\right]=6.01 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{CO}]=6.01 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ for the following reaction at $150^{\circ} \mathrm{C}$ calculate the equilibrium constant.

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a. 8.32×10^{-9}
b. 2.32×10^{-8}
c. 6.45×10^{-9}
d. 1.21×10^{-8}
56. The equilibrium constant for the following reaction is 3.93 at $1200^{\circ} \mathrm{C}$. A system at equilibrium has $[\mathrm{CO}]=$ $0.0479 \mathrm{~mol} / \mathrm{L},\left[\mathrm{CH}_{4}\right]=0.0521 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]=0.0521 \mathrm{~mol} / \mathrm{L}$. What is the $\left[\mathrm{H}_{2}\right]$?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a. $\quad 0.0144 \mathrm{~mol} / \mathrm{L}$
b. $0.212 \mathrm{~mol} / \mathrm{L}$
c. $\quad 0.243 \mathrm{~mol} / \mathrm{L}$
d. $0.271 \mathrm{~mol} / \mathrm{L}$
57. Consider the following reactions at equilibrium and determine which of the indicated changes will cause the reaction to proceed forward.

$$
\begin{array}{ll}
\text { I. } \quad \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \left(\text { add } \mathrm{CH}_{4}\right) \\
\text { II. } \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) & \left(\text { remove } \mathrm{NH}_{3}\right) \\
\text { III. } \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HF}(\mathrm{~g}) & \left(\text { add } \mathrm{F}_{2}\right) \\
\text { IV. } \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & (\text { remove O} \\
\text {) } \\
\text { V. } \mathrm{BaO}(\mathrm{~s})+\mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{BaSO}_{4}(\mathrm{~s}) & (\text { add BaO) }
\end{array}
$$

a. II and III only
b. II, III and V only
c. I, IV and V only
d. I and IV only
58. The reversible reaction:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

has come to equilibrium in a vessel of specific volume and at a given temperature. Before the reaction, the concentrations of the reactants were $0.060 \mathrm{~mol} / \mathrm{L}^{\circ}$ of SO_{2} and $0.050 \mathrm{~mol} / \mathrm{L}^{\text {of }} \mathrm{O}_{2} . \mathrm{No} \mathrm{SO}_{3}$ was present. After equilibrium was reached, the concentration of SO_{3} was $0.040 \mathrm{~mol} / \mathrm{L}$. What is the equilibrium constant, K_{c}, for this reaction?
a. 133
b. 4.0
c. 8.88
d. 13.3
59. Which of the following equations does NOT represent physical equilibria:
a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b. $3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
c. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NaCl}(\mathrm{s})$
d. $\mathrm{CO}_{2}(\mathrm{~s}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
60. The numerical value of the equilibrium constant may be altered by changing the
a. volume of the reaction vessel.
b. partial pressure of any of the gases in the system.
c. the temperature of the system.
d. the concentrations of reactants and products.
61. If $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is removed from the container in the reaction below, the change that will result is

$$
2 \mathrm{Bi}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \quad \Delta \mathrm{H}=25 \mathrm{~kJ}
$$

a. $\left[\mathrm{Bi}^{3+}\right]$ will decrease
b. $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{Bi}_{2} \mathrm{~S}_{3}\right]$ will increase
c. $\left[\mathrm{Bi}^{3+}\right]$ and $\left[\mathrm{Bi}_{2} \mathrm{~S}_{3}\right]$ will decrease
d. $\left[\mathrm{Bi}^{3+}\right]$ will increase
62. In a reversible chemical reaction, which factors must be equal when the reaction is at equilibrium?
a. concentration of reactants and concentration of products
b. rate at which reactants are consumed and rate at which products are formed
c. potential energy of reactants and potential energy of products
d. activation energy of reactants and activation energy of products
63. Consider the following equilibrium:

$$
3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The equilibrium constant expression is
a. $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}\right]^{3}\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}$
b. $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]^{3}\left[\mathrm{NH}_{3}\right]^{2}}$
c. $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]^{3}\left[\mathrm{NH}_{3}\right]^{2}}$
d. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}\right]^{3}\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]^{4}}$
64. Consider the rate diagram below for the following reaction:

$$
2 \mathrm{HI}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

Which of the following occurs at time t_{1} ?
a. addition of H_{2}
b. addition of HI
c. addition of a catalyst
d. a decrease in volume
65. Consider the system

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

If the concentration of ammonia gas is tripled, the value of the equilibrium constant will
a. triple.
b. increase by more than a factor of three.
c. decrease to one-third its value.
d. remain the same.
66. Consider the following:
I. constant temperature
II. equal concentrations of reactants and products
III. equal rates of forward and reverse reactions

A system at equilibrium must have
a. I and II only.
b. I and III only.
c. II and III only.
d. I, II and III.
67. The following reaction strongly favours products at $25^{\circ} \mathrm{C}$.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which one of the following K_{c} values would best be related to this reaction at the specified temperature?
a. 7.6×10^{-2}
b. 1.02×10^{5}
c. 4.56×10^{-8}
d. 56.2
68. What are two conditions necessary to establish a dynamic equilibrium?
a. constant temperature and open system
b. open system and reversible reaction
c. reversible reaction and closed system
d. variable temperature and reversible reaction
69. If a bottle $1 / 2$ full of $\mathrm{H}_{2} \mathrm{O}(1)$ is tightly corked, equilibrium will be reached between $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ in the bottle. Which of the following is incorrect?
a. Raising temperature favors formation of more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
b. Lowering temperature will decrease pressure on inside walls.
c. Water vapor pressure will increase as temperature increases.
d. Decreasing volume by pushing the cork farther in favors formation of more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
70. The solubility of AgI is $1.22 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$. What is the value of K_{sp} for AgI ?
a. $\quad 1.1 \times 10^{-4}$
b. 1.2×10^{-8}
c. 5.7×10^{-2}
d. 1.5×10^{-16}
71. When a saturated solution of $\mathrm{Cr}(\mathrm{OH})_{3}$ is formed, the concentration of Cr^{3+} is $1.26 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$. What is the value of $\mathrm{K}_{\text {sp }}$ for $\mathrm{Cr}(\mathrm{OH})_{3}$?
a. 6.8×10^{-31}
b. 1.6×10^{-16}
c. 2.0×10^{-24}
d. 6.3×10^{-26}
72. Consider the following equilibrium:

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+175 \mathrm{~kJ}
$$

Which of the following diagrams best represents the change in the concentration of $\mathrm{CO}_{2}(\mathrm{~g})$ as temperature is decreased at time t_{1} ?

73. The solubility of a solute is best determined from which type of solution?
a. a saturated solution
b. any solution at $25^{\circ} \mathrm{C}$
c. an unsaturated solution
d. a supersaturated solution
74. Which expression correctly describes the $\mathrm{K}_{\text {sp }}$ for aluminum sulfide?
a. $\quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{S}_{2}^{-}\right]$
b. $\mathrm{K}_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3}$
c. $\mathrm{K}_{\mathrm{sp}}=\frac{\left[\mathrm{Al}^{3+}\right]\left[\mathrm{S}^{2-}\right]}{\mathrm{Al}_{2} \mathrm{~S}_{3}}$
d. $\quad \mathrm{K}_{\text {sp }}=\frac{\left[\mathrm{Al}^{3+}\right]^{3}\left[\mathrm{~S}^{2-}\right]^{2}}{\mathrm{Al}_{2} \mathrm{~S}_{3}}$
75. Given the $\mathrm{K}_{\text {sp }}$ for FeS is 3.7×10^{-19}, the solubility of FeS in \mathbf{g} / \mathbf{L} is
a. $\quad 6.1 \times 10^{-10} \mathrm{~g} / \mathrm{L}$.
b. $3.7 \times 10^{-19} \mathrm{~g} / \mathrm{L}$.
c. $5.3 \times 10^{-8} \mathrm{~g} / \mathrm{L}$.
d. $4.3 \times 10^{-5} \mathrm{~g} / \mathrm{L}$.
76. Which of the following solids is incorrectly matched with its solubility product expression?
a. $\mathrm{PbBr}_{2}: \mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Br}^{-}\right]^{2}$
b. $\mathrm{Ag}_{2} \mathrm{~S}: \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]$
c. $\mathrm{Ni}(\mathrm{OH})_{2}: \mathrm{K}_{\text {sp }}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
d. $\mathrm{Ag}_{2} \mathrm{CO}_{3}: \mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]^{3}$
77. In a saturated solution, the rate of dissolving is
a. equal to zero.
b. equal to the rate of crystallization.
c. less than the rate of crystallization.
d. greater than the rate of crystallization.
78. What is the concentration of the fluoride ions in a saturated solution of BaF_{2} ? $\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\mathrm{BaF}_{2}=1.0 \times 10^{-6}\right)$
a. $\quad 6.3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
b. $1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
c. $2.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
d. $\quad 1.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
79. Consider the following solubility equilibrium:

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

A student adds $\mathrm{NaCl}(\mathrm{s})$ to a saturated solution of PbCl_{2}. When equilibrium is reestablished, how have the concentrations changed from the original equilibrium?
a. $\left[\mathrm{Pb}^{2+}\right]$ and $\left[\mathrm{Cl}^{-}\right]$both increased.
b. $\left[\mathrm{Pb}^{2+}\right]$ and $\left[\mathrm{Cl}^{-}\right]$both decreased.
c. $\left[\mathrm{Pb}^{2+}\right]$ decreased and $\left[\mathrm{Cl}^{-}\right]$increased.
d. $\left[\mathrm{Pb}^{2+}\right]$ increased and $\left[\mathrm{Cl}^{-}\right]$decreased.
80. Which one of the following factors will change the value of the $\mathrm{K}_{\text {sp }}$?
a. temperature
b. pressure
c. concentration
d. surface area
81. A saturated solution is prepared by dissolving a salt in water. Which of the following graphs could represent the ion concentrations as the temperature is changed?

82. Given the following compounds and their K_{sp} values, which salt is the MOST soluble?
a. calcium sulfaterme
$\mathrm{K}_{\text {sp }}=2.4 \times 10^{-5} \quad$ Time
b. lead(II)sulfate
$\mathrm{K}_{\text {sp }}=1.1 \times 10^{-8}$
c. silver chloride
$\mathrm{K}_{\text {sp }}=1.8 \times 10^{-10}$
d. barium chromate
$\mathrm{K}_{\text {sp }}=8.5 \times 10^{-11}$
83. The solubility of CuCl in water is $5.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. The $\mathrm{K}_{\text {sp }}$ for CuCl is:
a. $\quad 5.7 \times 10^{-8}$
b. 3.2×10^{-7}
c. 3.2×10^{-4}
d. 3.1×10^{6}

Acid Base Equilibrium

84. A substance which produces hydrogen ions in solution is the definition of
a. an Arrhenius acid.
b. an Arrhenius base.
c. a Brönsted-Lowry acid.
d. a Brönsted-Lowry base.
85. Consider the following equilibrium constant expression:

$$
K=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HS}^{-}\right]}
$$

This expression represents the
a. K_{b} for HS^{-}
b. K_{a} for HS^{-}
c. K_{a} for $\mathrm{H}_{2} \mathrm{~S}$
d. K_{b} for $\mathrm{H}_{2} \mathrm{~S}$
86. What is the pH of 300 mL of $0.0040 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$?
a. 2.40
b. 2.60
c. 2.92
d. 3.40
87. A solution has an $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of $2.3 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$? What is the OH^{-}ion concentration and is this solution acidic or basic?
a. $4.3 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$: acidic
b. $2.3 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$: acidic
c. $2.3 \times 10^{-18} \mathrm{~mol} / \mathrm{L}$: acidic
d. $4.3 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$: basic
88. Calculate the percent ionization of the acid $\mathrm{HF}(\mathrm{aq})$ in $1.0 \mathrm{~mol} / \mathrm{L}$ aqueous HF solution.
a. $7.2 \times 10^{-4} \%$
b. 0.072%
c. 2.58%
d. 100%
89. Consider the following equilibrium:

$$
\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}+\mathrm{HIO}_{3} \leftrightarrow \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}+\mathrm{IO}_{3}^{-}
$$

The order of Brönsted-Lowry acids and bases is
a. acid, base, acid, base
b. acid, base, base, acid
c. base, acid, acid, base
d. base, acid, base, acid
90. What is the K_{a} expression for the third ionization step of phosphoric acid?
a. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
b. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]}{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}$
c. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]}$
d. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}$
91. Which one of the following relationships are true?
a. The higher the $\left[\mathrm{H}^{+}\right]$the higher the pH
b. The lower the pH , the lower the [OH^{-}]
c. The lower the $\left[\mathrm{OH}^{-}\right.$], the lower the $\left[\mathrm{H}^{+}\right.$]
d. The higher the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$], the lower the $\left[\mathrm{H}^{+}\right.$]
92. The $\left[\mathrm{OH}^{-}\right]$in a solution is $8.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$. What is the pH ?
a. 8.50
b. 4.07
c. 7.00
d. 9.93
93. What is the K_{a} of a monoprotic weak acid, HX, if the hydronium ion concentration of a $0.400 \mathrm{~mol} / \mathrm{L}$ solution is $1.40 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$?
a. $\quad 1.22 \times 10^{-9}$
b. $\quad 1.40 \times 10^{-3}$
c. 4.90×10^{-8}
d. 1.96×10^{-8}
94. What is the pH of a $0.470 \mathrm{~mol} / \mathrm{L}$ solution of benzoic acid?
a. 2.25
b. 11.75
c. 1.01
d. 4.51
95. A $0.10 \mathrm{~mol} / \mathrm{L}$ solution of a weak base is 8.1% ionized. What is the K_{b} ?
a. 8.8×10^{-4}
b. 7.6×10^{-4}
c. 6.6×10^{-4}
d. 8.4×10^{-4}
96. An example of a nonelectrolyte is
a. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$.
b. $\mathrm{NaCl}(\mathrm{aq})$.
c. $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$.
d. $\mathrm{HCl}(\mathrm{aq})$.
97. Citric acid, which is extracted from citrus fruits and pineapple waste, is used extensively in the manufacture of candy and soft drinks. Which of the following is a characteristic of a citric acid solution?
a. a bitter taste
b. a sour taste
c. the ability to neutralize vinegar
d. the ability to turn litmus from red to blue
98. What happens to the concentration of the hydroxide ion if the pH decreases from 11.5 to 8.5 during a reaction?
a. It decreases by a factor of 3 .
b. It decreases by a factor of 1000 .
c. It increases by a factor of 3 .
d. It increases by a factor of 1000 .

Electrochemistry
99. What is E° for the reaction

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Zn}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Zn}(\mathrm{~s}) ?
$$

a. +5.62 V
b. +2.43 V
c. +0.90 V
d. -0.90 V
100. In an electrochemical cell consisting of zinc and silver in appropriate solutions, which of the following is TRUE?
a. the zinc electrode gains mass and the silver electrode loses mass
b. electrons flow from the silver electrode to the zinc electrode
c. cations in the solution move toward the silver electrode
d. the voltage remains constant as the cell operates
101.Consider the following diagram:

The half-reaction at the cathode is
a. $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$ (s)
b. $2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}^{-}$
c. $\mathrm{H}_{2} \mathrm{O} \rightarrow 1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
d. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
102. Which reaction occurs at the cathode in the following electrochemical cell:

$$
\mathrm{Mg} / \mathrm{Mg}^{2+} / / \mathrm{Sn}^{2+} / \mathrm{Sn}
$$

a. Mg becomes oxidized
b. Mg^{2+} becomes reduced
c. Sn^{2+} becomes reduced
d. Sn becomes oxidized
103. Based on the following information, arrange the four metal ions $\mathrm{A}^{+}, \mathrm{B}^{+}, \mathrm{C}^{+}$, and D^{+}in order of decreasing strength of oxidizing agents.

Only metals A, B and C react with H^{+}to give H_{2}.
When C is added to solutions of the other metal ions, metallic B and D are formed.
Metal C does not reduce A^{+}.
a. $\mathrm{A}^{+}>\mathrm{C}^{+}>\mathrm{B}^{+}>\mathrm{D}^{+}$
b. $\mathrm{C}^{+}>\mathrm{A}^{+}>\mathrm{D}^{+}>\mathrm{B}^{+}$
c. $\mathrm{D}^{+}>\mathrm{B}^{+}>\mathrm{C}^{+}>\mathrm{A}^{+}$
d. $\mathrm{A}^{+}>\mathrm{C}^{+}>\mathrm{D}^{+}>\mathrm{B}^{+}$
104. Which one of the following is NOT characteristic of electroplating?
a. The reduction half-reaction occurs at the cathode of an electroplating electrolytic cell.
b. The object to be plated is set up as the anode in an electrolytic cell.
c. The electrolytic solution contains ions of the metal to be plated.
d. The anode must be made of the plating material.
105. Predict which of the following metal(s) would react with a solution of copper(II) ions.
a. zinc only
b. iron, zinc, and aluminum
c. aluminum only
d. silver only
106. The electrolysis of molten sodium bromide yields Br_{2} by
a. oxidation at the anode, the positive electrode.
b. oxidation at the cathode, the positive electrode.
c. reduction at the anode, the negative electrode.
d. reduction at the cathode, the negative electrode.

Use the following electrochemical cell diagram to answer question 96.

As the above cell operates,
a. copper ions migrate into the salt bridge
b. cations migrate towards the zinc electrode.
c. the mass of the copper electrode increases.
d. anions migrate towards the copper electrode.
107. In an experiment, strips of metals A, B, and C were placed in beakers containing solutions of A^{4+}, B^{3+}, and C^{2+} and were allowed to react. The following data was obtained.

	$\mathrm{A}(\mathrm{s})$	$\mathrm{B}(\mathrm{s})$	$\mathrm{C}(\mathrm{s})$
$\mathrm{A}^{4+}(\mathrm{aq})$	X	reaction	reaction
$\mathrm{B}^{3+}(\mathrm{aq})$	no reaction	X	no reaction
$\mathrm{C}^{2+}(\mathrm{aq})$	no reaction	reaction	X

Arranging these metal ions in order of decreasing tendency to attract electrons gives which of the following?
a. $\mathrm{A}^{4+}>\mathrm{B}^{3+}>\mathrm{C}^{2+}$
b. $\mathrm{A}^{4+}>\mathrm{C}^{2+}>\mathrm{B}^{3+}$
c. $\mathrm{B}^{3+}>\mathrm{C}^{2+}>\mathrm{A}^{4+}$
d. $\mathrm{B}^{3+}>\mathrm{A}^{4+}>\mathrm{C}^{2+}$
108. The diagram below shows a key being plated with copper.

Given the reduction reaction for this cell:

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

This reduction occurs at
a. A, which is the anode.
b. A, which is the cathode.
c. B, which is the anode.
d. B, which is the cathode.
109. A beaker contains a small amount of gold dust $(\mathrm{Au}(\mathrm{s}))$. Which of the following aqueous solutions, when added to the beaker, would dissolve the gold dust (ie convert $\mathrm{Au}(\mathrm{s})$ to $\mathrm{Au}^{3+}(\mathrm{aq})$)?
a. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ (acidic solution)
b. $\mathrm{H}_{2} \mathrm{O}_{2}$ (acidic solution)
c. Br_{2}
d. Zn^{2+}
110. Which of the following statements about the standard hydrogen electrode is true?
a. Hydrogen gas is bubbled through the electrode at a pressure of 2 atm .
b. The electrode contains a copper wire that serves as a chemically inert surface for reduction oxidation reactions to occur.
c. The electrode contains a platinum wire that serves as a chemically inert surface for reduction oxidation reactions to occur.
d. The standard hydrogen electrode is assigned a half cell potential of 1.0 V .

